UNDERSTANDING CHORD NAMES – A COMPREHENSIVE GUIDE

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION TO CHORD NAMES</td>
<td>5</td>
</tr>
<tr>
<td>PART 1: FOUNDATIONAL CONCEPTS AND LANGUAGE</td>
<td>8</td>
</tr>
<tr>
<td>THE MUSICAL ALPHABET</td>
<td>9</td>
</tr>
<tr>
<td>INTERVAL NAMES</td>
<td>15</td>
</tr>
<tr>
<td>DEGREE NUMBERS</td>
<td>19</td>
</tr>
<tr>
<td>PART 2: OVERVIEW OF CHORD NAME COMPONENTS</td>
<td>25</td>
</tr>
<tr>
<td>COMPONENT 1: ROOT NAME</td>
<td>26</td>
</tr>
<tr>
<td>COMPONENT 2: TRIAD PERMUTATION INDICATOR</td>
<td>29</td>
</tr>
<tr>
<td>COMPONENT 3: TERTIAN EXTENSION INDICATOR</td>
<td>33</td>
</tr>
<tr>
<td>COMPONENT 4: SUSPENSION INDICATOR</td>
<td>41</td>
</tr>
<tr>
<td>COMPONENT 5: ALTERED FIFTH INDICATOR</td>
<td>44</td>
</tr>
<tr>
<td>COMPONENT 6: ADDITIONAL TONE INDICATOR</td>
<td>48</td>
</tr>
<tr>
<td>COMPONENT 7: DELETED TONE INDICATOR</td>
<td>52</td>
</tr>
<tr>
<td>COMPONENT 8: ALTERNATE BASS NOTE</td>
<td>54</td>
</tr>
<tr>
<td>PART 3: PRACTICAL SKILLS DEVELOPMENT</td>
<td>59</td>
</tr>
<tr>
<td>IDENTIFYING CHORD NAME COMPONENTS</td>
<td>59</td>
</tr>
<tr>
<td>DECODING CHORD NAMES</td>
<td>61</td>
</tr>
<tr>
<td>ENCODING CHORD NAMES</td>
<td>73</td>
</tr>
<tr>
<td>CLOSING THOUGHTS</td>
<td>89</td>
</tr>
<tr>
<td>ANSWERS FOR EXERCISES</td>
<td>90</td>
</tr>
<tr>
<td>PHOTOCOPY MASTERS</td>
<td>92</td>
</tr>
</tbody>
</table>
ABOUT THE AUTHOR

Born in Australia in 1962, Russell has been studying and playing music since 1975. His instrument of choice is the guitar, and he enjoys playing both acoustic and electric versions of the instrument. With over 10 years’ experience as a guitar teacher, he is devoted to helping others to learn about chord names and chord harmony, and deepen their love of the gift of music. He has founded chordnames.com as an online platform to provide tools to deepen the understanding of chord names within the musical community.
INTRODUCTION TO CHORD NAMES

What are chord names?

Chord names are codes that composers and songwriters use to indicate a specific combination of musical notes to create different harmonic musical effects. These codes are a musical communication system, intended to make the transfer of this harmonic information efficient and effective. There are two essential skills musicians must use when encountering chord names – chord name decoding and chord name encoding.

Chord name decoding is the task of reading a chord name and deciphering what collection of musical notes are intended to be performed by the musician.

Chord name encoding is the opposite task, the taking of a collection of musical notes and choosing a chord name that accurately represents that specific collection of notes.

Why is it important for a musician to understand chord names?

If a musician does not understand how to decode a chord name then they will not accurately perform what a composer or songwriter intended to be musically communicated. Whether the chord name is located in a piece of sheet music, a jazz fake book or instructed verbally by another musician while jamming, the musician’s level of understanding of chord names will affect their musical competence and contribution to a music group or band, and as a result jeopardise their level of personal enjoyment.

On the other hand, if a musician does not understand how to encode a chord, they will struggle to label their harmonic ideas and limit their ability to share these ideas with other musicians in either written or oral form.

These types of frustrating situations are common. Many well-intentioned music lovers often find themselves limited and intimidated by this important area of the musical art form, and this negative experience can affect their confidence and limit their musical progress.
However there is no need for musicians to be frustrated or intimidated by chord names any longer. *Understanding Chord Names – A Comprehensive Guide* will equip readers with important foundational musical concepts as they explore each component of a chord name in-depth, and be empowered by a series of practical skill-developing exercises to take readers to the next level of chord name competence. Learning to understand chord names is an exciting and liberating journey for a musician, so come along and learn how to crack the code of musical chord names!

This guide is comprised of three parts -

PART 1: FOUNDATIONAL CONCEPTS AND LANGUAGE explains the various musical concepts and language that are utilised by the chord names coding system. With the frequent used of graphs and charts readers will be able to visualise the musical concepts and equip them to understand the language and symbols of chord name components.

PART 2: OVERVIEW OF CHORD NAME COMPONENTS explores each of the eight different components that are used in the chord naming system. Each component is explained by giving an outline of the component’s contribution to the chord name, followed by showing the various component options. The component rules are outlined and appropriate commentary is given where appropriate.

PART 3: PRACTICAL SKILLS DEVELOPMENT will develop the reader’s ability to decode and encode chord names for themselves. Descriptions of each coding task will be given, along with practical examples. Readers will then be encouraged to practice their decoding and encoding skills with practical exercises. Answers to the exercises will be found at the back of the guide.

It is hoped that *Understanding Chord Names – A Comprehensive Guide* will prove to be of great benefit to the musical community and give helpful insights and develop useful skills in the exciting and rewarding subject of chord names.
EXPLANATION OF NOTATION SYSTEM USED IN THIS GUIDE

It has been normal practice to represent a chord by displaying both the notes in the staff and the name above the staff.

This system is well known and extremely useful for studying music theory. However, this guide does not require the reader to be familiar with standard music notation. The guide uses an alternate method of notation through the combined use of the chord name, its chord-note-formula and related chord-degree-formula.

An example of this system is as follows –

C9 Chord Name
1-3-5-b7-9 chord-degree-formula of the Chord Name
C-E-G-B-D chord-note-formula of the Chord Name

As chord names utilise degree numbers in their component symbols, it is hoped that this system will prove to be an accurate and efficient notation method that might be useful to a wide range of musicians of varying levels of experience in musical theory. The chord-note-formula and chord-degree-formula systems will be discussed and explained in the following text of Part 1.
PART 1: FOUNDATIONAL CONCEPTS AND LANGUAGE

Chord names come in a multitude of shapes, sizes and levels of complexity. Some are very short and simple, such as C, Dm, Em, F, G7, Am and B°. Others are more complex, such as Cmaj7, Dm7, Em9, Fsus4, G13, Am11 and Bm7♭5. In fact some chord names like Cmaj11♭9 or Gm13#9(no11) can be quite intimidating!

However, if a chord name is divided up into its different components and then analysed according to the chord name coding system, then even the most intimidating of chord names can be accurately understood and utilised.

Below is an example of a simple chord name (top) and a more complex chord (bottom) with the various chord name components separated for clarity.

This chord name can be broken down into three component parts. This chord name can be broken down into five component parts.

Different Naming Components

There are eight components that can potentially be used for decoding and encoding chord names. It is important to understand that these eight components are not all used in every chord. They are potential components, to be used only if necessary. Each music genre tends to develop its own harmonic conventions and styles which influence the types of chords that are used in that genre. Some music genres, like country & western and reggae tend to focus on simple chords. Other genres like jazz and fusion-rock tend to focus on complex chords and voicings.

Each of these components will be discussed in detail in this guide. However, in order to understand the components it is necessary to first of all have some foundational knowledge about the various musical concepts, languages and symbols that lay behind the chord name components.
Music symbol systems
There are many systems of musical symbols that are used by musicians as technical languages to discuss and analyse musical melody and harmony. Three of these symbol systems are of great relevance to learning about chord names. These symbol systems are - the Musical Alphabet, Interval Names and Degree Numbers. Each one will be explained in turn.

THE MUSICAL ALPHABET
There are twelve different notes in the musical alphabet in the Western musical tradition. These twelve notes make up a series of pitches that culminate in a thirteenth note that is referred to as the octave. The octave occurs when a musical note’s vibration frequency is double the frequency of the base note (known as the root-note in chords). This natural phenomenon of the octave is typically perceived by the human ear as having a strange sense of “sounding the same but different” when compared to notes with different frequency relationships. This sameness comes from the perception of a harmonic similarity between the notes, a pleasing sameness due to their shared harmonic structures. This similarity makes them members of the same pitch class. Their difference perceived by the two notes in the octave is an identification of their different pitch height, with the octave sounding ‘higher’ than the root-note. They share the same pitch class but are distinguished by their different pitch frequencies.

Western music tradition
This phrase refers to a specific historical and cultural context to music theory. It is not specifically referring to the musical genre of Country and Western music, but is referring to the historical development of music theory traditions and conventions throughout Western civilisation over the last few centuries. This is in contrast to Eastern and Oriental approaches to music theory that are at times radically different to the Western system. Music genres that have been highly influenced and developed by the Western music system include classical, popular, rock, jazz, country and western, and many others. It is sometimes further defined as Tonic Western tradition because of this music system’s important role of the tonic note around which scales are developed.
The octave is divided up into twelve steps. The word *octave* not only refers to this thirteenth note in this series, but also includes the other twelve steps within the tonal gap between them. These two uses of the word octave can be differentiated by referring to the *octave note* in contrast to the *octave range*.

Pitch Class

The seventeen different pitch names in the musical alphabet also represent what is known as their respective *pitch classes*. Root-notes and their octaves belong to the same pitch class, meaning that their respective pitch frequencies are mathematically related by a frequency ratio of 2 and this relationship is identified by the human ear. An octave note’s pitch frequency is exactly double that of its root-note, and the root-note is half the frequency of the octave. For example, concert pitch is a tuning standard that assumes the A note above middle C is tuned to 440Hz. This means that the A note an octave higher has a pitch frequency of 880Hz and the A note an octave lower has a pitch frequency of 220Hz. This principle applies to all of the notes in the chromatic scale. Scientific Pitch Notation (SPN) is a pitch naming system that specifies each note with an octave number (middle C is identified as C4) so that every note within each pitch class can be specified.
The Chromatic Scale

The chromatic scale is the playing of each of these twelve notes in sequential single steps, either in ascending order from the root-note or in descending order from the octave note.

Each of the twelve notes in the chromatic scale have names that are related to its musical pitch. These are referred to as alphabetic pitch names because these notes are named from the first seven letters of the alphabet i.e. A, B, C, D, E, F and G. These notes are referred to as natural notes and come from the pattern of notes known as the Major Scale. Chord names are based on the pattern and naming system of the Major Scale. The Major Scale will be explained shortly. The other five notes in the chromatic scale also have pitch deviations from the seven natural notes of the Major Scale. They are referred to as accidentals. The name accidentals does not mean they are accidents, but rather pitch deviations from the seven natural notes of the Major Scale. These accidental notes use a pitch modifier symbol, a ♯ (sharp) or a ♭ (flat) letter to indicate that the note has been raised in pitch by one step (sharpened) or lowered in pitch by one step (flattened).

Enharmonics

In common tuning the ten accidental notes therefore each of these pitches have a dual name. A term that is used to highlight this feature is enharmonic. This feature is based on the popular Twelve Tone Equal Temperament [12-TET] tuning (referred above as common tuning) in which the twelve notes are equally spaced in their respective pitch frequencies. Most pianos and guitars are typically tuned according to this tuning system. In other tuning systems the accidental notes do not necessarily have the exact same pitch. There are also systems that include quarter-tones or microtones between the notes.
INTERVAL NAMES

An interval refers to the tonal distance between any two pitches within the chromatic scale. Each interval is given a name that describes a note’s relationship with the other note. If there are more than two notes then each note now has an interval relationship with every other note. In chord names the most important interval relationship each note has is with its root-note.

Interval Qualities

An interval’s quality refers to the harmonic properties of the two combined notes. In the following chart the variety of interval qualities are shown, along with their conventional abbreviated names and some examples of their use.

<table>
<thead>
<tr>
<th>Interval Quality</th>
<th>Abbreviation Symbol</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect</td>
<td>P</td>
<td>P1, P4, P5, P8</td>
</tr>
<tr>
<td>Major</td>
<td>M</td>
<td>M2, M3, M6, M7</td>
</tr>
<tr>
<td>Minor</td>
<td>m</td>
<td>m2, m3, m6, m7</td>
</tr>
<tr>
<td>Augmented</td>
<td>A</td>
<td>A5</td>
</tr>
<tr>
<td>Diminished</td>
<td>d</td>
<td>d5</td>
</tr>
<tr>
<td>Tritone</td>
<td>TT</td>
<td>The tritone is another name for a diminished fifth (d5) interval. It is comprised of three (tri) tones.</td>
</tr>
<tr>
<td>Doubly Augmented</td>
<td>AA</td>
<td>AA4 (double augmented are rarely used)</td>
</tr>
<tr>
<td>Doubly Diminished</td>
<td>dd</td>
<td>dd5 (double diminished are rarely used)</td>
</tr>
</tbody>
</table>

Interval Qualities and Symbols

The following chart is a helpful reference to learn the interval names of each note of the chromatic scale. The names are for the first octave only. It is clear from their names that the natural notes of the Major Scale form the basic naming framework, and the accidental notes from the chromatic scale are named in reference to the natural notes next to them. For example, a minor second is a semitone lower in pitch than a major second.
Chromatic alteration of Intervals

If intervals are raised or lowered in pitch (chromatically altered), then there is an established hierarchy of interval symbols that should be followed when adjusting the name of an interval. For example, in the following chart you can see that if a major third (M3) interval is raised by a semitone it will become an augmented third (A3). If a major third (M3) is lowered by a semitone it will become a minor third (m3). If a minor third is lowered by a semitone it will become a diminished third (d3). The convention is to use capital letters for Perfect, Major and Augmented interval names and lowercase letters for minor and diminished interval names.
UNDERSTANDING CHORD NAMES – A COMPREHENSIVE GUIDE

Six common naming differences between Interval Names and Degree Numbers

The relevance of understanding these six naming distinctions can be seen in a couple of examples. A Cm7♯5 chord would not typically be written as a Cm7♭6. Likewise a C7♯9 chord would not be written as a C7♭10. It is important to take note of these six adjusted degree numbers.

Chord-degree-formulas

Chord-degree-formulas are a shorthand way of representing the various degree combinations from which the notes of a chord can be derived. Chord-degree-formulas are independent of any particular root-note’s pitch. The root-note is simply represented with a 1, and the other notes are represented by their respective degree numbers. Each chord-degree-formula is unique and therefore produces a unique sounding chord. A chord-degree-formula is organised with its degree numbers arranged in ascending numerical order starting from the root-note number 1.

For example, the chord-degree-formula for a major seven chord (maj7) is 1-3-5-7. This is comprised of a root-note (1), a major third (3), perfect fifth (5) and major seventh (7). A useful aspect of chord-degree-formulas is that irrespective of what root-note is chosen, they will consistently produce chords of the same harmonic character i.e. their harmonic information is independent of any particular root-note or key.

Note that it is possible to represent a chord through a chord-interval-formula. The above example of a major seven chord would be written as Root-M3-P5-M7. However this guide will focus on using the chord-degree-formula form for chord analysis as it is considered a more efficient tool for the present purposes.
Chord-note-formulas
A chord-note-formula is the combination of alphabetic pitch names that are combined together to form the notes of a particular chord. The chord-note-formula for a C major chord is C-E-G. A chord-note-formula can be translated into a chord-degree-formula, and a chord-degree-formula can be translated into a chord-note-formula once the name of the root-note has been determined. They communicate the harmonic ingredients of a chord in two related but different languages.

A chord-degree-formula communicates what interval degrees are contained in a specific chord irrespective of what key the chord is played in.

A chord-note-formula communicates what actual notes are to be played on an instrument. The establishment of the root note allows each degree to be translated into corresponding notes from the root note’s chromatic scale.

For example, the chord-degree-formula for Caug9 is 1-3-♯5-♭7-9 and its chord-degree-formula can be analysed visually within the two octaves of degree numbers below –

First octave degree numbers
Second octave degree numbers

The corresponding chord-note-formula for Caug9 is C-E-A♭-B♭-D and its note sequence can by analysed visually within the C Major Scale over two octaves –
When a chord-degree-formula is translated into a chord-degree-formula, it will be noticed that sometimes the notes are not in alphabetical order.

For example, notice the difference between the chord-note-formulas of Cadd2 and Cadd9.

Cadd2
- **chord-degree-formula**: 1-2-3-5
- **chord-note-formula**: C-D-E-G

<table>
<thead>
<tr>
<th>Root</th>
<th>b2</th>
<th>b3</th>
<th>3</th>
<th>b5</th>
<th>5#</th>
<th>6</th>
<th>b7</th>
<th>7</th>
<th>Octave</th>
<th>b9</th>
<th>9</th>
<th>#9</th>
<th>b11</th>
<th>11</th>
<th>#11</th>
<th>12</th>
<th>b13</th>
<th>13</th>
<th>#13</th>
<th>14</th>
<th>Double Octave</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Cb</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>Gb</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>Cb</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>Gb</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>Cb</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Cadd9
- **chord-degree-formula**: 1-3-5-9
- **chord-note-formula**: C-E-G-D

<table>
<thead>
<tr>
<th>Root</th>
<th>b2</th>
<th>b3</th>
<th>3</th>
<th>b5</th>
<th>5#</th>
<th>6</th>
<th>b7</th>
<th>7</th>
<th>Octave</th>
<th>b9</th>
<th>9</th>
<th>#9</th>
<th>b11</th>
<th>11</th>
<th>#11</th>
<th>12</th>
<th>b13</th>
<th>13</th>
<th>#13</th>
<th>14</th>
<th>Double Octave</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Cb</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>Gb</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>Cb</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>Gb</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>Cb</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

In the chord-degree-formulas the added D is clearly shown as either a first octave or second octave note by both the number of the degree with 2 being first octave and 9 being second octave (degree numbers 8 or above are second octave degrees).

However the chord-note-formula distinction of first and second octave notes is made by the position of the note in relation to the other first octave notes. In the above examples the D in the Cadd2 is located within the triad whereas the D in the Cadd9 is located after the triad. This positioning indicates the typical sequence of notes when being performed and it also reflects the sequence of notes that are used when writing a chord using standard music notation.

All second octave notes in a chord-note-formula should be placed in alphabetical order AFTER the first octave notes have been placed in alphabetical order.
PART 2: OVERVIEW OF CHORD NAME COMPONENTS

Chord names are a combination of various components. There are eight potential components that may be utilised in a chord name. They are -

- **Component 1**: Root Name
- **Component 2**: Triad Permutation Indicator
- **Component 3**: Tertian Extension Indicator
- **Component 4**: Suspension Indicator
- **Component 5**: Altered Fifth Indicator
- **Component 6**: Additional Tone Indicator
- **Component 7**: Deleted Tone Indicator
- **Component 8**: Alternate Bass Note

Each of these eight components has a different array of symbols for their respective chord naming options. The following chart gives an overview of the components and their options. Component should be read from left to right starting with Component 1.

<table>
<thead>
<tr>
<th>Root Name 1-3-5</th>
<th>Triad Permutation Indicator</th>
<th>Tertian Extension Indicator</th>
<th>Suspension Indicator</th>
<th>Altered Fifth Indicator</th>
<th>Additional Tone Indicator</th>
<th>Deleted Tone Indicator</th>
<th>Alternate Bass Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>m</td>
<td>1-♭3-5</td>
<td>7</td>
<td>b7</td>
<td>b2 (no root)</td>
<td>/A</td>
<td></td>
</tr>
<tr>
<td>A♯</td>
<td>+</td>
<td>1-3-♯5</td>
<td>9</td>
<td>b7-9</td>
<td>/2 (no3)</td>
<td>/A♯</td>
<td></td>
</tr>
<tr>
<td>B♭</td>
<td>o</td>
<td>1-♭3-♭5</td>
<td>11</td>
<td>b7-9-11</td>
<td>/4 (no5)</td>
<td>/B♭</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>1-5</td>
<td>13</td>
<td>♭7-9-11-13</td>
<td></td>
<td>/B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>maj7</td>
<td>7</td>
<td>/6 (no9)</td>
<td>/C</td>
<td></td>
</tr>
<tr>
<td>C♯</td>
<td></td>
<td></td>
<td>maj9</td>
<td>7-9</td>
<td>♭9 (no11)</td>
<td>/C♯</td>
<td></td>
</tr>
<tr>
<td>D♭</td>
<td></td>
<td></td>
<td>maj11</td>
<td>7-9-11</td>
<td>/9</td>
<td>/D♭</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>maj13</td>
<td>7-9-11-13</td>
<td>♯9</td>
<td>/D</td>
<td></td>
</tr>
</tbody>
</table>
| D♯ | | | | /♭♭ İslam Studies Research: A Journal of Islamic Studies and Social Sciences
COMPONENT 1: ROOT NAME

OVERVIEW
The first component in a chord name is the root name. The root name indicates which alphabetic pitch is to function as the root-note for the chord. It is the reference point from which all the other notes of the chord are given degree numbers.

Two for the price of one
The choosing of the root-note also establishes the root chord. The default root chord is a major triad, with a chord-degree-formula of 1-3-5. This is why the chord-degree-formula 1-3-5 is shown in the Encoding-Decoding Chart beneath the Root Name title. If the chord is to have a different triad quality than a major triad then Component 2 needs to be utilised, otherwise it will remain a major triad. This convention of the default major triad explains why major chords are often shown in written music as stand-alone pitch names without any other symbols. It is understood by musicians that these represent a major chord. For example, in the following music score excerpt the chords C and G (circled in red) are root names only and they represent a C major and a G major chord in the score.

Excerpt from *Gratitude* showing use of various chords including major chords

OPTIONS FOR COMPONENT 1
All seventeen pitch names are available for establishing the root name.

There are root name systems which are non-alphabetical as they do not use the alphabetic pitch names but instead employ other systems of identification for the
chords (see break-out article for more details). However this guide will focus on the conventional alphabetic chord name system.

COMPONENT RULES
Each of the components has rules that help to maintain a uniform and consistent appearance and understanding of chord names. These rules have been developed as a common convention throughout Western popular music however this does not necessarily imply a common consensus by all musicians. The rules are commonly adhered to by many sheet music publishers, composers and song-writers. The music community is a very large and diverse demographic of human beings and there is a wide diversity of chord naming habits among some musicians of certain genres. Nevertheless, the following rules will assist the reader to develop a disciplined approach to their use of chord names that is consistent to a very wide range of published musical works.

RULES FOR COMPONENT 1
1. Only one root name is to be chosen for the chord name.
2. The root name must contain one alphabetic letter.
3. Accidental modifiers are to be placed on the right hand side of the alphabetic root name.
4. The root name establishes the root-note and the default root triad for the chord name.
5. The default root triad is a major triad with a chord-degree-formula of 1-3-5.
6. It is optional whether any quality indicator is added to the root name to indicate that it is a major triad.

COMMENTARY ON RULES FOR COMPONENT 1
Re Rule 5: Dual triad chord names – Sometimes, especially in the jazz genre, a composer may want two separate triads to played at the same time. These are known as polychords. For example C|G or C\G would indicate that a C major triad is to be played on top of (higher pitch range) a G major triad. This should not be confused with the chord name C/G which indicates a C major triad played with a G note as the bass note (see Component 8: Alternate Bass Note).
Re Rule 6: Major triad quality indicators - There is a practice of adding the quality indicator of M, Ma, Maj or Δ to a pitch name to remove any ambiguity that a major chord is intended. For example, sometimes C major has been written as CM, CMa, CMaj or CΔ. Whilst the Ma symbol is a clear and unambiguous distinction from the minor chord symbols of m and Mi respectively, the M and the Δ can be confusing. The capital letter M is clear in printed music but if handwritten it can easily be confused for a lower case m which represents a minor triad. The delta symbol Δ has at times also proven to be ambiguous when used on its own because some interpret this symbol to mean a major triad, while others interpret it to mean a major seventh chord. The convention used in this guide of having no added symbol to represent a major triad is common across most music genres and is a less ambiguous system of chord naming.

EXAMPLES OF CHORD ROOT-NAMES

If the pitch C is chosen as a root-note, then a C major chord and the root name will be C. The chord-degree formula is 1-3-5. The chord-note-formula is C-E-G.

If the pitch C is chosen as a root-note, then a C major chord and the root name will be C. The chord-degree formula is 1-3-5. The chord-note-formula is C-E-G.

Non-Alphabetical Root Name Systems

There are various musical notation systems that use non-alphabetical root names. These systems instead refer to root names that represent a chord's harmonic function within a chord progression. Common examples are:

Roman Numeral System: I, II, III, IV, V, VI, VII

Nashville Number System: 1, 2, 3, 4, 5, 6, 7

The major benefit of these systems is that the chord names and the chord progressions that they form are not tied to any particular musical key, and therefore allow musicians to quickly transpose the chords to a different key. A disadvantage of these systems is that they require a rigorous knowledge of chord harmony by the performer which can be difficult for novice musicians.
RULES FOR COMPONENT 2

1. Only one triad permutation indicator may be chosen for the chord name.
2. The triad permutation indicator should be placed immediately to the right of the root name.
3. The diminished triad permutation indicator is superscripted but superscripting the other triad indicators is optional.
4. If there is more than one symbol option for the component, whichever symbol is chosen should be used consistently throughout any single piece of written music.
5. When a triad or dyad permutation indicator is chosen, the default triad’s chord-degree-formula of 1-3-5 is immediately modified to the new chord-degree-formula.

COMMENTARY ON RULES FOR COMPONENT 2

Re Rule 2: Power-chords - The power-chord’s 5 symbol can appear ambiguous if next to a pitch name that has an accidental. For example, G♯5, B♭5, etc. In an attempt to remove any ambiguity it is possible to bracket the 5 such as G♯(5) or B♭(5). However this is not common practice and would create a new ambiguity as it would suggest that it was a G♯ major triad with an added 5 (1-3-5 add 5) which is redundant and unnecessary. Therefore it is normal convention to live with the possible ambiguity and continue the practice of showing the 5 next to the pitch name.

Re Rule 3: Superscription – It is common convention to superscript a diminished triad permutation indicator such as C⁰. Other triad indicators are optional and may take the form of either Cm or C⁰, C+ or C⁺ and a major triad may be shown as CM or C⁰, etc. See Rule 4 for more other symbol options.

Re Rule 4: Symbol options - There are a number of alternate symbols for each of the triads. A major triad may use displayed without a symbol or with the symbols M, Ma, maj or Δ. A minor triad may use m, Mi, min or - as symbol options. An augmented triad may use + or aug and a diminished triad may use ⁰ (a superscripted o) or dim. In this way each triad has a variety of symbol options with which to spell the chord name.
EXAMPLES OF CHORDS WITH TRIAD PERMUTATIONS

Cm has a chord-degree-formula of 1-♭3-5 therefore with C as the root-note the chord-note-formula would be C-E♭-G.

C+ has a chord-degree-formula of 1-3-♯5 therefore with C as the root-note note-formula would be C-E-G#.

Co has a chord-degree-formula of 1-♭3-♭5 therefore with C as t° chord-note-formula would be C-E♭-G♭.

C5 removes the third from a major triad resulting in a chord and a chord-note-formula of C-G.

Excerps from In God’s Hands showing a variety of triads

COMPONE

OVERVIEW

Tertian

of r

th
COMPONENT 4: SUSPENSION INDICATOR

OVERVIEW
Suspension chords, also known as suspended chords or the nickname sus chords, are chords that were historically used for a transition effect that implied the need for harmonic resolution (cadence). However, the modern use of suspension chords in popular and rock music has given this category of chord a wider spectrum of use and function and no longer necessarily requiring any form of cadence. The Suspension Indicator allows for the replacement of the third of the triad with suspension tone/s.

OPTIONS FOR COMPONENT 4

<table>
<thead>
<tr>
<th>Suspension Name</th>
<th>Component Symbols</th>
<th>Effect of this component on the chord-degree-formula</th>
<th>Resultant Chord-degree-formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>suspended second</td>
<td>2, sus2</td>
<td>The major third is removed from the triad and replaced by the addition of a major second note.</td>
<td>1-2-5</td>
</tr>
<tr>
<td>suspended fourth</td>
<td>4, sus4, sus</td>
<td>The major third is removed from the triad and replaced by the addition of a perfect fourth note.</td>
<td>1-4-5</td>
</tr>
<tr>
<td>sus two sus four</td>
<td>2/4, sus2/sus4, sus2sus4</td>
<td>The major third is removed from the triad and replaced by the addition of major second and perfect fourth notes.</td>
<td>1-2-4-5</td>
</tr>
</tbody>
</table>

RULES FOR COMPONENT 4

1. One or two suspension indicators may be chosen for the chord name.
2. The suspension indicator/s should be placed immediately to the right of the chord name in its current form as determined by the preceding components.
3. It is optional whether the suspension indicator is superscripted.
4. If there is more than one symbol option for the component, whichever symbol is chosen should be used consistently throughout any single piece of written music.
5. When a suspension indicator is chosen, the chord's current chord-degree-formula will have any existing third degree symbols deleted and superseded by the suspension indicator’s symbol/s.
COMMENTARY ON RULES FOR COMPONENT 4

Re Rule 2: Positioning of suspension indicator relative to tertian extensions – The convention used in this guide is to position suspension indicators after tertian extension considerations – hence Component 4 comes after Component 3. This produces chord names such as 7sus, 9sus 13sus. However there is an alternate naming convention, especially among jazz musicians, to locate suspension indicators before any tertian extensions. For example, sus7, sus9, sus13. The chord-degree-formulas for each of these chord names are identical; they just represent different symbol location conventions. This guide has chosen to present a component sequence that is consistent with the common convention of contemporary and popular written music forms.

Re Rule 4: The double-suspended symbol options - The symbol \(\text{sus}^2 \) indicates the inclusion of two suspensions. The other symbol options for this combination of suspensions are \(2/4 \), \(\text{sus}^2/4 \) or \(\text{sus}2\text{sus}4 \).

Re Rule 4: Avoiding ambiguity with suspended second chord names - Suspended second indicators may appear as sus2 or 2. For example, Csus2 or C2. However the spelling of C2 can be confusing because some interpret this as a C suspended second chord but others would interpret it as a C add second. Sometimes the spelling of C(2) is used but this can carry the same ambiguity. The issue centres on the question – should the third be deleted or left in the chord-degree-formula? A consistent naming approach would remove a lot of this misunderstanding. It is a helpful convention to consistently interpret any appearance of sus in a symbol to consistently mean that the third is to be deleted. If the third is to remain then the naming convention of using the add2 symbol is available under Component 6: Additional Tone Indicator.

Re Rule 4: Avoiding ambiguity with suspended fourth chord names - Suspended fourth indicators may appear as sus, sus4 or 4. For example, Csus, Csus4 or C4. However the spelling of C4 can be confusing because some interpret this as a C suspended four but others interpret it as C add four. Sometimes the spelling of C(4) is used but this can carry the same ambiguity. The issue centres on the question – should the third be deleted or left in the chord-degree-formula? A consistent naming approach would remove a lot of this misunderstanding. It is a helpful convention to consistently interpret any appearance of sus in a symbol to consistently mean that
the third is to be deleted. If the third is to remain then the naming convention of using the add4 symbol is available under Component 6: Additional Tone Indicator.

EXAMPLES OF SUSPENSION CHORDS

Csus2 removes the major third and adds a major second to the root perfect fifth. This results in a chord-degree-formula of 1-2-5 and formula of C-D-G.

Csus4 removes the major third and adds a perfect fourth to the root fifth. This results in a chord-degree-formula of 1-4-5 and C-F-G.

C7sus4 The 7 indicates that a minor seventh is added to a C dominant seven chord. Next, the sus4 indicates that the major third is removed and replaced by a perfect fourth. This results in a chord-degree-formula of 1-4-5♭7 and a chord-note-formula of C-F-G-B♭.

C9sus The 9 indicates that a minor seventh and a major second are added to the C major triad to create a C dominant ninth chord. Next, the sus4 indicates that the major third is removed and replaced by a perfect fourth. This results in a chord-degree-formula of 1-4-5♭7-9 and a
COMPONENT 8: ALTERNATE BASS NOTE

OVERVIEW

The combination of a chord with an alternate bass note can create a wide variety of new and even strange harmonic effects due to some unusual combinations of intervals being played together. These effects include –

1. Creating an inversion of a chord that gives a different voicing of the same chord. For example, C on a G bass (C/G) creates the 2nd inversion of a C chord where the perfect fifth is now the lowest tone in the chord.

2. Creating a chord substitution for a different quality of chord. For example, C on an A bass (C/A) is harmonically equivalent to Am7.

3. Creating a dissonant chord that has a harmonic function within the context of a chord progression. For example, C/B.

An example of each of these effects can be seen in a simple progression such as C - C/B - C/A - C/G. After playing the C major root chord, the C/B creates a dissonance seeking resolution, it is followed by C/A which is harmonically equivalent to an Am7, and then the sequence leads to C/G which is the 2nd inversion of the C major.

Chords with alternate bass notes are often known as 'slash chords' because of the use of the forward slash symbol to separate the chord from the alternate bass note. It is important to understand that if an alternate bass note is added to a chord, the chord retains its original root-note as the naming reference of the chord and the chord-degree-formula will remain relative to the original root-note, not the alternate bass note. For example, if F# is added to a chord Bmaj7, it will produce a chord name of Bmaj7/F#. The root-name will remain as B and does not change to F#.

OPTIONS FOR COMPONENT 8

An alternate bass note can be any one of the 17 pitch name options as listed under Component 1, so long as it is not the root-note of the chord. The options are -

If a C major chord is combined with the various alternate bass note options within its chromatic scale, the following harmonic effects are produced:

<table>
<thead>
<tr>
<th>Alternate Bass Note</th>
<th>Interval of Alternate Bass Note in relation to the Root-Note</th>
<th>Harmonic Effect of the Additional Base Note, using the Additional Base note as the root</th>
</tr>
</thead>
<tbody>
<tr>
<td>C# or Db</td>
<td>2 as the bass note</td>
<td>Creates D♭dim₇</td>
</tr>
<tr>
<td>D</td>
<td>2 as the bass note</td>
<td>Creates D7</td>
</tr>
<tr>
<td>D# or Eb</td>
<td>3 as the bass note</td>
<td>Creates E♭6₉</td>
</tr>
<tr>
<td>E</td>
<td>3 as the bass note</td>
<td>1st inversion creates</td>
</tr>
<tr>
<td>F</td>
<td>4 as the bass note</td>
<td>Creates</td>
</tr>
<tr>
<td>F# or G♭</td>
<td>5 as the bass note</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>5 as the bass note</td>
<td></td>
</tr>
<tr>
<td>G# or A♭</td>
<td>5 as the bass note</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>6 as the bass note</td>
<td></td>
</tr>
<tr>
<td>A# or B♭</td>
<td>7 as the bass note</td>
<td></td>
</tr>
</tbody>
</table>

Analysis

The analysis of Alternate Bass Notes relative to a C Major Chord shows the two inversions of the C major triad as C/E and C/G (highlighted in orange). It also shows some common chord substitutions – C/F for Fmaj9 and C/A for Am7 (highlighted in grey).

Pages 55 to 58 missing from sample.
IDENTIFYING CHORD NAME COMPONENTS

The most basic and important preliminary skill in decoding and encoding chords is to identify the various chord components that make up a chord name. The accurate identification of the various components is foundational for ensuring accuracy when decoding and encoding. In the table below some example chord names have been analysed and identified under their relevant component headings.

<table>
<thead>
<tr>
<th>Chord Names</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bdim</td>
<td>B</td>
<td>dim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C#7</td>
<td>C#</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D7sus4</td>
<td>D</td>
<td>7</td>
<td>sus4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E9♭5</td>
<td>E</td>
<td>9</td>
<td>b5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F#7♯5♭9</td>
<td>F#</td>
<td>7</td>
<td>#5</td>
<td>b9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ab13♯5(no11)</td>
<td>Ab</td>
<td>13</td>
<td>#5</td>
<td></td>
<td>(no11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aadd2/E</td>
<td>A</td>
<td></td>
<td></td>
<td>add2</td>
<td></td>
<td></td>
<td>/E</td>
<td></td>
</tr>
</tbody>
</table>

Component Identification Example
UNDERSTANDING CHORD NAMES – A COMPREHENSIVE GUIDE

DECODING CHORD NAMES

DESCRIPTING THE CHORD NAME DECODING PROCESS

Chord Name decoding is the task of deciphering a chord name to determine which notes a composer or songwriter intends to be played or represented in a piece of music. Chord name decoding is accurately reading and understanding a chord.

It is of course possible to simply read a chord name in a piece of music and then perform that chord on an instrument through the knowledge of chord shapes based upon root notes. This is often done in *parrot fashion* without understanding how the chord name was generated or what it truly represents. It is the skill of chord name decoding that unlocks any mystery and dispels any confusion that might surround chord names and allows musicians to perform with greater awareness and insight for improvisation and harmonic embellishment.

EXAMPLES OF CHORD NAME DECODING

We are going to use three steps to thoroughly decode a chord name into specific musical notes:

Step 1 – Identify the root-note and the various chord name components.

Step 2 – Translate each component into degree numbers and compile a chord-degree-formula.

Step 3 – Translate the chord-degree-formula into notes and compile a chord-note-formula.

Three examples will be used to demonstrate the chord name decoding process step-by-step. Two reference charts have been provided to assist the reader to visually follow the decoding process. They are the Chord Name Encoder-Decoder Chart and the Degree Number Reference Chart. There are photocopy masters of these charts at the back of this guide for personal study purposes. It is also suggested that the reader have a pen and a notepad to use for these exercises.
UNDERSTANDING CHORD NAMES – A COMPREHENSIVE GUIDE

DECODING EXAMPLE 1

We will decode the chord name Fm7.

Step 1 – Identify the root-note and the various chord name components.

Reading the chord name from left to right and starting with the root-name, we can analyse Fm7 as F, m, 7. Using the Chord Name Encoder-Decoder Chart we can identify these chord name’s components (black arrows).

Step 2 – Translate each component into degree numbers and compile a chord-degree-formula.

Continuing to use the Chord Name Encoder-Decoder Chart we identify the degree numbers associated with each identified component (the red ovals). Remember that the chord name components are read from left to right and the default major triad may be adjusted by the various components, each contributing to the formation and transformation of the chord-degree-formula in their turn.

Chord Name Encoder-Decoder Chart for Decoding Example 1
The resultant chord-degree-formula is 1-♭3-5-♭7. As these degrees are already organised in ascending numerical sequence it is not necessary to adjust them and we are ready to move to step 3.

<table>
<thead>
<tr>
<th>Component</th>
<th>Coding instructions</th>
<th>Chord-degree-formula transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Default major triad = 1-3-5.</td>
<td>1-3-5</td>
</tr>
<tr>
<td>m</td>
<td>Minor triad permutation = flatten 3 to ♭3.</td>
<td>1-♭3-5</td>
</tr>
<tr>
<td>7</td>
<td>Minor seventh tertian extension = add a ♭7.</td>
<td>1-♭3-5-♭7</td>
</tr>
</tbody>
</table>

Degree formula transformation for Decoding Example 1

Step 3 – Translate the chord-degree-formula into notes and compile a chord-note-formula.

3.1 Locate the root-name on the Degree Number Reference Chart (black arrow and black oval). In this example we identified the root-name as F natural.

3.2 Using the root-name we now locate vertically up to the root-note (red arrow 1).

3.3 Working left to right from the root-note we locate each degree number contained in the chord-degree-formula (red arrow 2 and red ovals). We have identified Root, ♭3, 5 and ♭7.

3.4 From each identified degree number we locate vertically down to each corresponding note in the root-note’s chromatic scale (blue arrow 3 and blue ovals). We have identified F, A♭, C and E♭ from the F chromatic scale.

3.5 We compile the various notes together into the chord-note-formula of F-A♭-C-E♭.
Decoding Example 1 Summary

The chord name of $Fm7$ was decoded by identifying its component parts (Step 1), we then translated each component into degree numbers relative to the root note and organised them into a chord-degree formula of $1-\flat3-5-\flat7$ (Step 2). Finally, we translated the chord-degree formula into notes relative to the root name and organised them into a chord-note formula of $F-A-\flat-C-\flat-E$ (Step 3).

We have now thoroughly decoded the chord name and we can use the notes to play the chord on our relevant instrument and armed with the degree formula we have a good understanding of the chord's harmonic components.

PAGE 65 TO 71
MISSING FROM SAMPLE
PRACTICING CHORD NAME DECODING

Below are ten decoding exercises for the reader to attempt. There are photocopy masters on pages 93-94 for the reader to use and the three previous examples to consult for establishing a systematic method of decoding. A pen and notepad would also be useful for the completion of these exercises. Answers are located on page 91.

Decoding Exercises

1. C9
2. Gmmaj7
3. Dø
4. A13
5. Em7*5
6. Fm9/ E\textsubscript{b}
7. B\textsubscript{b}9#5
8. E\textsubscript{b}m6/9
9. A\textsubscript{b}maj7#11
10. D\textsubscript{b}m11♭13

The ability to decode a chord name is a very satisfying and empowering skill for a musician. Having an accurate understanding of the chord will help the musician to make useful harmonic choices when performing chords on their chosen instrument/s.

We will now move on to the slightly more complex skill of encoding a series or cluster of musical notes into a chord name.

Photo: Unsplash.com (Richard Jaimes)
ENCODING CHORD NAMES

DESCRIBING THE CHORD NAME ENCODING PROCESS
Chord Name encoding is the task of taking a collection of notes and creating a chord name that accurately represents the intervals of those notes as they relate to a chosen root-note. Composers and songwriters who are creating and improvising music encode chord names for their written musical documentation and for communicating their harmonic ideas to other musicians.

Chord name encoding is a more demanding skill than chord name decoding because any existing chord name has already had encoding decisions made by the composer or songwriter. As the reader begins to learn the encoding process they will understand that there are a number of encoding decisions that must be made from the available encoding options. This process may appear slow and complex at the start, but with practice and experience the encoding process can become a quick and enjoyable experience.

EXAMPLES OF CHORD NAME ENCODING
We are going to use three steps to encode a chord name from a series of musical notes:

Step 1 – Organise the notes into alphabetical order.

Step 2 – Translate the notes into first and second octave degree numbers.

Step 3 – Allocate the degree numbers to chord name components.

Step 4 – Combine the chord name components into a chord name and corresponding chord-degree-formula.

We will use three examples to demonstrate chord name encoding step-by-step. Two reference charts have been provided to assist the reader to visually follow the encoding process. They are the Degree Number Reference Chart and the Chord Name Encoder-Decoder Chart.
ENCODING EXAMPLE 1
We will encode the notes of G, D#, B and F#.

Step 1 – Organise the notes into alphabetical order.
Starting with the lowest pitched note organise the rest of the notes into ascending alphabetical order. The lowest note will temporarily be considered as the root-note. If the chord is to have an alternate bass note, then this alternate bass note should be omitted from the note sequence temporarily until Step 4 in the encoding process. In this exercise the alphabetical note sequence would be G-B-D#-F#.

Step 2 – Translate the notes into first and second octave degree numbers.

2.1 Locate the root-name on the Degree Number Reference Chart (black arrow and black oval). We have identified the root-name as G.
2.2 Working left to right from the root-name we identify each note contained in chord-note-formula (red arrow 1 and red ovals). We have identified G, B, D♯.

2.3 From each identified note we locate vertically up to each of the first and second octave degree numbers (blue arrow 2 and blue ovals). This will indicate the range of degree numbers available for us to incorporate into the name and its chord-degree-formula. We have identified Root, 3/b♭.

<table>
<thead>
<tr>
<th>Second octave degree numbers</th>
<th>8</th>
<th>b♭11</th>
<th>b♭1♭1</th>
</tr>
</thead>
<tbody>
<tr>
<td>First octave degree numbers</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Allocated component symbols</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interval options for Encoding Ex

Step 3 – Allocate the degree numbers

As we begin to encode the degree numbers, we allocate the first octave degree numbers, then consider the second octave degree numbers and leave the b♭11, b♭13, 14 for future consideration.

Using the Chord Name Encoder Decoder Chart, starting from left to right, we can allocate the octave degree numbers to appropriate chord name components.

3.1 Identify the a G note.

3.2 Seek degree extension symbol.

PAGES 75 TO 87
MISSING FROM SAMPLE
PRACTICING CHORD NAME ENCODING

Below are ten encoding exercises for the reader to attempt. There are photocopy masters on pages 93-94 for the reader to use and the three previous examples to consult for establishing a systematic method of encoding. A pen and notepad would also be useful for the completion of these exercises. Answers are located on page 91.

Encoding Exercises

1. A-C#-E-F#
2. B-E-F#
3. F#-A#-C#-F
4. C#-D#-E-G#-B
5. Eb-F-G-Ab-Bb-Db
6. Ab-B-Eb-G
7. Db-Eb-F-Ab-Bb-B
8. G-A-B-C#-F#
9. D-F-F#-A#-C
10. A#-B-C#-D#-F-G-G#
CLOSING THOUGHTS

Congratulations on making it to the end of the guide! I sincerely hope that the journey has been rewarding for you. Let’s take a quick look back at what has been covered …

Part 1 took us through some important theory fundaments of music to equip you with an awareness of the languages of musicians. In Part 2 the eight potential components of chord names were discussed and detailed. And finally in Part 3 the reader was encouraged to practice decoding and encoding chord names for themselves to ensure that their knowledge was translated into practical skills. With practice and experience the knowledge and processes outlined in this guide will become part of the reader’s musical language and discipline, and will equip them with chord name competence to effectively, and hopefully enjoyably, participate in the musical community.

Musical chords paint our world with harmonic colours that make our lives richer. It is hoped that this guide has helped the reader to deepen their understanding of the world of chord names and the vast wealth of musical treasures that they contain.

My website has a chord names blog along with a range of other music learning tools.

changer:

I would love to hear any feedback you might have about this guide. Please feel free to email me at contact@chordnames.com.
PAGES 90 TO 95
MISSING FROM
SAMPLE